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Abstract. How the particle size and volumetric ratio of silicon carbide (SiC) powder additions will 

strengthen polymethyl methacrylate (PMMA) is unclear. The purpose of this in vitro study was to 

optimize the reinforcement parameters of PMMA with SiC powder by using the Taguchi experimental 

design method. Particle size, volumetric rate, silane coupling rate, and mixing type were determined as 

parameters that would affect the reinforcement of PMMA with SiC powder. Using the Taguchi L9 

orthogonal array, test specimens with different parameter combinations were fabricated and tested. The 

fracture load (in newtons) of each specimen group was recorded with the 3-point bend test. The thermal 

conductivity values of 6050-mm and 3-mm-thick rectangular specimens were measured by using the 

Linseis THB100 thermal conductivity unit. The thermal diffusivity values were then calculated. Thermal 

analysis indicated improvement in the thermal conductivity of PMMA after reinforcement with SiC. The 

maximum thermal diffusivity was obtained with 15% SiC powder by volume. Thermal conductivity and 

flexural strength increased with an increase in particle size. The maximum flexural strength value was 

obtained with 5% SiC powder by volume. Increasing the particle size of the filler SiC powder resulted 

in increased thermal conductivity and flexural strength. Increasing the SiC filler powder by volume 

increased the thermal conductivity of PMMA but reduced its flexural strength. This study helped 

determine the optimum conditions for the use of SiC powder. Knowledge of the importance of these 

variables will help in more effective modification of denture base resin with SiC powder to improve heat 

transfer without adversely affecting strength. 
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1.Introduction 
Polymethyl methacrylate (PMMA) is the most widely used complete denture base material 1. 

However, as temperature affects taste perception, complete denture users have difficulty tasting food 

because of the poor thermal conductivity of PMMA 2-4, which may affect prosthesis satisfaction 5,6. 

A denture base with high thermal conductivity will improve both tissue health 7 and taste and prevent 

the patient from rejecting the prosthesis as a foreign body 7-9. Different materials with high thermal 

conductivity, such as thermally conductive ceramics, may be more suitable than metal powders for 

increasing the thermal conductivity of PMMA 10,11. because most of these ceramics have a thermal 

conductivity similar to that of metals 10,12. Also, since ceramic fillers have a low density, they do not 

significantly increase the weight of the prosthesis 10. 

Since the bonds in silicon carbide (SiC) are highly covalent, it is more durable than oxide ceramics, 

has high thermal conductivity and low density, and is very hard and thermally stable. With good 

biocompatibility and excellent cytocompatibility, it is suitable for use in medical implants and prostheses 

13-17. 
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A material with high thermal conductivity is more suitable than a reduction in thickness for 

improving heat transfer, because prosthesis thickness cannot always be reduced 18. The thickness of 

the denture base is effective in heat diffusion 19. Thermal diffusion (thermal dispersion) is considered 

the most important factor in sensing intraoral temperature changes because the thermal diffusivity, 

defined as the ratio of transmitted heat to stored heat (volumetric), measures the heat transfer rate of a 

material from the hot end to the cold end 20,21. In previous studies 7,10,11,22,23 designed to increase 

the thermal conductivity of PMMA, electron microscopy images showed that SiC powders added to 

PMMA dispersed homogeneously, increasing thermal conductivity without negatively affecting bend 

strength; however, new approaches are needed.  

The Taguchi Method 24-26 was initially developed by Taguchi, who showed that experimental 

designs could be used to adjust variability around a target minimum 27 This process has been used to 

obtain more robust products by changing components after bringing the mean performance value to the 

target value, determined by its production and by controllable and uncontrollable processes 28-30. 

With the Taguchi test method, the cost of experimenting decreases, the material used decreases, and the 

tests can be completed in a shorter time 31,32. During this process, the Taguchi experimental design 

method uses tools such as the orthogonal array (OA), performance statistics, and loss function 33.   

The purpose of this in vitro study was to use the Taguchi experimental design method to add SiC 

powder of different particle size, volumetric rate, silane coupling rate, and mixing type to determine the 

parameters affecting PMMA and to investigate the thermal diffusivity and flexural strength of the 

modified PMMA. The null hypothesis was that all parameters examined would not affect the thermal 

conductivity or flexural strength. 
 

2.Materials and methods 
Rectangular stainless steel molds (3×10×65 mm) were prepared for the 3-point bend test in 

accordance with the ISO 1567 standard 22,34,35 and 6050×3 stainless steel molds were prepared for 

the thermal conductivity test in accordance with the ASTM E1530-06 36 standard. The molds were 

placed in muffles with Type II gypsum (Moldano; Kulzer GmbH) under 14-MPa pressure for 30 min in 

a hydraulic press (Carlo de Giorgi). After the gypsum had hardened, the molds were removed with a 

spatula.  

Conventional heat-polymerized denture base material (Meliodent; Kulzer GmbH) and filler powders 

were weighed on a balance with 0.0001-g precision (FGH 200; Dikomsan) for each experiment (Table 

2). Silane was added to improve the bonding of the SiC powders to the polymer matrix. In the silanization 

process, 70% ethanol solution was prepared by using distilled water and ethanol with pH 4.5 for each 

experimental group 28.  

3-methacryloxypropyltrimethoxysilane (MTS) was added in the different proportions required for 

the experiment type (Table 2), hydrolyzed, and silanized 37. After the filler powders had dried in an 

oven at 62°C for 1 h, filler powders were mixed with the PMMA powder in the different proportions. 

Mechanical alloying of the filler powder and PMMA was done with zirconia balls and a mill (Planetary 

Ball Mill PM 400; Retsch). The filler powder and PMMA were stirred with a mixer (Finevortex; FINE) 

by using stainless steel balls. The mixing was manual with a stick; no devices were used. 

Methylmethacrylate liquid was then added. When the acrylic resin reached a doughy consistency, it was 

placed in the mold cavity, and the flasks were sealed and pressurized at 14 MPa for 5 min under a 

hydraulic press. Compressed mufflers were boiled for 2 h. The specimens were polished using 320-, 

600-, and 1200-grit abrasive paper. Flexural strength was measured with the 3-point bend test on a 

universal testing machine (model 3344; Instron Ltd) 10. 

Experiments following the Taguchi experimental design method 27 were carried out to determine 

the effect of parameters on the thermal diffusivity and flexural strength of PMMA (Table 1). Thermal 

diffusivity and maximum flexural strength were regarded as performance characteristics, and a Taguchi 

L9(34) orthogonal array was used as the experimental plan for the 4 parameters: particle size, volumetric 
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rate, silane coupling rate, and mixing type of SiC powder and PMMA. Eighteen experiments were 

carried out by using the L9(34) experimental layout with the Taguchi method instead of performing 

34=81 experiments with a complete factorial design.  

The combination of parameters, total number of experiments, and examined results are specified in 

Table 2. The L9 orthogonal array (OA) was chosen as it was the most suitable for the conditions being 

investigated.  

 

Table 1. Experimental parameters and their levels 

 
 

Table 2. Experimental layout and corresponding results 

 
 

Thermal diffusivity and flexural strength were considered as performance characteristics. The 

performance statistic was chosen as the optimization criterion. “The larger the better” situation was 

chosen both for the thermal diffusivity and friction factor. The performance statistics were assessed from 

the following equation 24: 

𝑍𝐵 = −10 log(
1

𝑛
∑

1

𝑌𝑖
2)𝑛

𝑖=1  ,      (1) 

 

where ZB denotes performance statistics, Yi the performance value of the ith experiment, and n the 

number of repetitions carried out for an experimental combination. In the Taguchi method, the 

experiment corresponding to the optimum conditions may not have been carried out for the entire 

duration of the experiments. In the current state, the performance value corresponding to optimum 

operating conditions was estimated by using the balanced characteristic of OA. For this reason, the 

additive model given as follows was used to predict the effect of the parameters 38: 

 

𝑌𝑖 = 𝜇 + 𝑋𝑖 + 𝑒𝑖,      (2) 
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where µ denotes the comprehensive mean of performance value, Xi the effect of the parameter level 

combination applied in the ith experiment, and ei the random error in the ith experiment. Calculations 

were made by using experimental data to determine whether the results of the verification experiments 

were valid. Additionally, the confidence interval was calculated as follows by 38: 

 

𝑌𝑖 ∓ √𝐹𝛼;1,𝐷𝐹𝑀𝑆𝑒
𝑀𝑆𝑒(

1+𝑚

𝑁
+

1

𝑛𝑖
),       (3) 

 

where F is the value of the F table, α indicates the error level, DFMSe is the degree of freedom of the 

mean square error, m denotes the degree of freedom used in the prediction of Yi, ni is the number of 

repetitions in the confirmation experiment, and N is the number of total experiments. 

The thermal conductivity coefficient was measured by using the Linseis THB100 thermal 

conductivity device, measuring with the temporary thermal bridge (THB) technique 39. After 

calculating the thermal conductivity coefficient, the thermal diffusivity coefficient was calculated by 

using 10 

 

  𝛼 =
𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑒𝑑 ℎ𝑒𝑎𝑡

𝑠𝑡𝑜𝑟𝑒𝑑 ℎ𝑒𝑎𝑡
=

𝑘

𝜌𝐶𝑝
                  [m2/s]    ,     (4) 

 

where k is the coefficient of heat conduction [W/mK], ρ is density [kg/m3], and Cp is specific heat. 

Thermal diffusivity is a measure of the thermal energy storage ability of materials. In addition, control 

of the homogeneous distribution in the internal structure of the composite material was carried out by 

scanning electron microscopy (SEM) (FEG 250; Quanta, FEI Company) analysis. 

 

3. Results and discussions 
The Taguchi experimental design method was used to designate the best variation (composition) for 

the reinforcement of PMMA using SiC powder. As seen in Figure 1, thermal diffusivity increased with 

increasing particle size. The maximum thermal diffusivity was obtained at the third level of the SiC 

powder volumetric rate (15%). For the parameters of mixing type and silane coupling rate, the values of 

thermal diffusivity were close to each other.  

 

 

 
Figure 1. Effect of each parameter on thermal 

diffusivity. S/N, signal to noise 
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As seen in Figure 2, the maximum flexural strength increased with increasing particle size. The 

maximum flexural strength value was obtained at the first level for the SiC powder volumetric rate. Also, 

the maximum flexural strength decreased with the increase of the SiC volumetric rate. Maximum 

flexural strength value was obtained at the second level for the parameter of silane coupling rate. 

Similarly, the second level of mixing style produced the maximum flexural strength.  

 

 
Figure 2. Effect of each parameter on flexural 

strength. S/N, signal to noise 

 

  

The contribution ratio refers to the effects of each factor in the process. The parameter with the 

highest contribution value indicates the most effective parameter on performance characteristics. The 

SiC volumetric rate was the most effective parameter among the parameters on thermal diffusivity, with 

a contribution ratio of 87% (Figure 3), indicating that heat transfer was enhanced as volumetric rate 

increased. 

 

 
Figure 3. Contribution ratio of each parameter on thermal 

diffusivity. Mix, mixing; P, particle; Vol, volume 

 

   

SiC powder size was the most effective parameter among the parameters on maximum stress with a 

contribution ratio of 32.4% (Figure 4). Mixing style had a contribution ratio of 21.3% on maximum 

stress. 
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Figure 4. Contribution ratio of each parameter on 

flexural strength. Mix, mixing; P, particle; Vol, volume 

 

The optimum values of thermal diffusivity and maximum stress were predicted by using Equation 2 

(Table 3). From Equation 3, the predictions for both thermal diffusivity and maximum stress were 

obtained at a confidence interval of 95% (Table 3). Two validation experiments, performed under 

optimum conditions (Table 3), were within the confidence interval. Therefore, the interactive effects of 

the parameters were not significant.  

 

Table 3. Optimum conditions and performance values 

 
 

The thermal and mechanical properties of PMMA can be improved through material reinforcement 

and composition changes. According to the results of the present study, experimental parameters were 

found to affect thermal conductivity and flexural strength and therefore the null hypothesis was rejected. 

The addition of SiC nanoparticles to acrylic resin denture base material has been reported to improve 

thermal conductivity and surface hardness, with no significant decrease in transverse strength 14. In 

the present study, the parameters of reinforcement of PMMA with SiC powder were assessed by using 

the Taguchi experimental design method. With this method, the optimal combination of chosen 

parameters was obtained 29,31. Knowledge of the importance of these variables will help in the more 

effective use of reinforcement with SiC powder in dentistry. The Taguchi method provides a systematic 

approach for optimizing quality, performance, and cost 30. Compared with experimental methods, the 

advantage of the Taguchi method is that it reduces the experimental cost and minimizes variability 

around the target when performance is optimized 32. Furthermore, optimal working conditions can be 

reproduced from the study in actual applications 33. The optimum conditions should be determined by 

analysis of the obtained results from the designed experiments.  

When the optimum results of the parameters affecting thermal conductivity and flexural stress were 

evaluated in terms of volumetric ratio, thermal conductivity was found to be 15% and flexural stress 5%. 

https://revmaterialeplastice.ro/


MATERIALE  PLASTICE                                                                                                                                                                
https://revmaterialeplastice.ro 

https://doi.org/10.37358/Mat.Plast.1964 

Mater. Plast., 57 (3), 2020, 137-146                                                                  143                                      https://doi.org/10.37358/MP.20.3.5388 
    
 

 

Therefore, a maximum volume of SiC powder filler should be added to increase thermal conductivity, 

while a minimum volume of SiC powder filler should be added in order not to reduce bending strength. 

Increasing the filler ratio has been reported to increase thermal conductivity in direct proportion but 

decrease the bend strength in inverse proportion 7,10,14. In the present study, the mixing style had no 

effect on thermal conductivity. The optimum particle size was 125 µm for both thermal conductivity and 

maximum stress. The most effective parameter for thermal conductivity in terms of the percentage of 

contribution was the volume ratio, while the particle size was the most effective parameter for maximum 

stress. 

The SEM images (Figure 5 A-C) revealed that the nanoscale filler was not structurally compatible 

with PMMA and was not integrated well. The flexural strength and thermal conductivity results were 

the lowest for the nanofiller groups. The SEM images of groups containing 125-µm particle size filler 

(Fig. 5 G-I) demonstrate that this size filler was structurally compatible with PMMA and was integrated 

well. This explains the high flexural strength and thermal conductivity values. The SEM images also 

show that the mixing type did not affect the dispersion of filler powders, confirming the experimental 

results. The most important criterion in the distribution is that the particle sizes of PMMA (121 m) and 

SiC (125 m) powders were similar.  

 
Figure 5. Scanning electron microscope images (original magnification ×1000).  

 A, Experiment 1 (0.2 µm and 5 % SiC powder, 0.5 % silane, manuel mixing). B, Experiment 2  

(0.2 µm and 10 % SiC powder, 1 % silane, stir mixing). C, Experiment 3 (0.2 µm and  

15 % SiC powder, 1.5 % silane, mechanical alloying). D, Experiment 4 (37 µm and 5 % SiC powder,  

1 % silane, mechanical alloying). E, Experiment 5 (37 µm and 10 % SiC powder, 1.5 % silane,  

manuel mixing). F, Experiment 6 (37 µm and 15 % SiC powder, 0.5 % silane, stir mixing).  

G, Experiment 7 (125 µm and 5 % SiC powder, 1.5 % silan, stir mixing). H, Experiment 8 (125 µm 

and 10 % SiC powder,  0.5 % silane, mechanical alloying). I, Experiment 9 (125 µm  

and 15 % SiC powder, 1 % silane, manuel mixing). 

 

The authors are unaware of an optimization study on the homogeneous distribution of filler powders 

in PMMA. In the current study, mixing type has a significant effect on flexural strength values only. In 
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the stirring process in a smaller mill, the balls may contact the powders more and cause more 

homogeneous dispersion. However, additional studies are indicated. 

Covering the palate with a denture base has been reported to reduce taste 5,6 and adding 20% 

aluminum particles improved temperature sensation and led to better patient satisfaction 23. Similarly, 

in our previous study 10, when the SiC filler powder with 37 µm particle size was added to the denture 

base material, its flexural strength and thermal conductivity were improved. However, especially in 

experimental groups containing nanosized powders and smaller particle sizes (nanoSiC and nano HA), 

the flexural strength was reduced. In the present study, the parameters were limited so as not to decrease 

the maximum stress below 65 MPa while increasing the thermal conductivity. Both thermal conductivity 

and bend strength values of PMMA containing microsized SiC powder were significantly higher than 

those of the group containing nanosized SiC powder 10. SiC is a biocompatible material 13,15-17 

and increases the thermal conductivity of denture resin without altering flexural properties 17. 

Silane containing 3-methacryloxypropyltrimethoxysilane (MTS) has been reported to increase the 

bond of resin cements to ceramic 37. In the present study, the amount of silane has no effect on thermal 

conductivity but slightly affected flexural strength. Silane coupling has a negligible effect in terms of 

both thermal conductivity and flexural strength. Limitations of this study include the limited number of 

different particle size filler powders and the limited number of different mixing techniques. Filling 

powders with different particle sizes can be used in future studies and more advanced mixing techniques 

can be evaluated. 

In future research, different optimization tools and algorithms can be used and compared, for 

example, response surface methodology and colonial bee algorithm. In addition, materials such as 

alumina which improve heat transfer properties can be evaluated in terms of both thermal conductivity 

and flexural strength.  

 

4.Conclusions 
Based on the findings of this in vitro study, the following conclusions were drawn: 

1. Optimized results for thermal diffusivity were a particle size of 125 µm, a volumetric rate of 

15%, a silane coupling rate of 1%, and a mixing style of stir.  

2. The most effective parameter affecting thermal diffusivity was the volumetric rate of SiC.  

3. Optimized results for flexural strength were a particle size of 125 µm, a volumetric rate of 5%, 

a silane coupling rate of 1%, and a mixing style of stir.  

4. The most effective parameter affecting the flexural strength was the particle size of SiC.  

5. The Taguchi method can be reliably used to reinforce PMMA with SiC, reducing experimental 

costs and time. 
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